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In  the two-dimensional sedimentation process beneath an inclined wall, the mixture 
of the particulate and liquid phases is separated from the wall by a boundary layer 
of the clear liquid. This paper contains a simple mathematical model giving waves 
on the interface between the clear liquid and the mixture. These waves are caused 
by a discontinuity in the gradient of the tangential velocity of the clear liquid, across 
the interface. In the limiting caae of small concentration of the particulate phase in 
the mixture, the model gives a dispersive wave running upward along the interface 
in the direction of the flow in the boundary layer. The effect of finite concentration 
is to introduce a damping. 

1. Introduction 
Consider the two-dimensional problem of sedimentation beneath a plane inclined 

wall, as shown in figure 1.  When the particle concentration a, in the mixture is 
smaller than a critical value a,, i t  is possible to get a solution (Schneider 1982) in which 
the mixture, with constant concentration a,, is separated from the clear liquid 
by a horizontal kinematic shock S, and from the sediment at the bottom by another 
horizontal kinematic shock S, (existence of the critical value a, waa predicted by 
Kynch (1952), who first formulated a comprehensive mathematical theory of 
sedimentation). Moreover, the mixture is also separated from the wall by a boundary 
layer of clear liquid. If a, is small the surface S, rises slowly, and the flow of the clear 
liquid in the boundary layer can be assumed to be steady. When experiments are done 
to simulate such a flow, it has been observed (Schaflinger 1983) that waves of 
deformation travel rapidly upward along the surface of separation. In  this paper we 
shall show that a simple model of the two-phase flow in the mixture does give a surface 
wave propagating upward along the interface. In  the limiting case when the 
concentration a, of the particulate phase tends to zero, this wave is purely dispersive. 
The effect of small a, is to introduce a small damping in this wave. However, these 
waves propagate too rapidly to be observed in the experiments reported by 
Schaflinger (1983). The dispersion relation shows that our waves are stable. The 
experimentally observed waves of Schaflinger are instabilities at a different timescale 
(see Herbolzheimer 1983 ; Davis, Herbolzheimer & Acrivos 1983). 

In  the basic flow of the sedimentation process below the inclined wall there is no 
discontinuity in the tangential velocity of the liquid across the interface. The surface 
waves obtained in this paper are caused by a discontinuity in the gradient (in the 
direction normal to the interface) of the tangential velocity. Also, gravity does not 
have any effect on these waves in the first approximation. Let us describe a model 
of the single-phase flow in which these waves can also be obtained. Consider a 
two-dimensional motion of an incompressible liquid of density pf such that the liquid 
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FIGURE 1. The basic undisturbed solution when a < a,. 

is at rest in the domain y < 0, has a shearing motion in the x-direction in the domain 
y > 0 given by the velocity distribution (u, v) = (yiioy, 0), where coy is constant, and 
is bounded at the top by the plane y = A.  Then the plane y = 0 is an interface 
separating the liquid at rest from the liquid in uniform shearing motion. We create 
small perturbations on this flow and use the usual boundary conditions that the 
perturbed interface is a stream surface, the normal velocity on the plane y = A is zero, 
and the velocity components vanish as y+ - 00. From linear analysis of waves of 
the form ei(Ez-at), we can deduce the following dispersion relation : 

which represents a dispersive wave. Now we proceed to show how these waves appear 
in the sedimention process and how they are modified owing to finite concentration 
a of the particulate phase in the mixture. 

2. Basic equations 
We choose the origin 0 on the surface S,, which is assumed to be fixed for small 

a, the x-axis upward along the wall, and the y-axis perpendicular to it sloping 
downward (see figure 1). Let 0 be the angle between the inclined wall of the vessel 
and the horizontal direction. We neglect viscosity in the equations of motion for the 
clear liquid as well as the mixture. Let y = 6(x, t )  be the equation of the perturbed 
interface. We denote the components of the velocity and the pressure in the clear 
liquid domain 0 < y < 6(x,t) by (u , v )  and p respectively. In the mixture the 
corresponding quantities for the solid phase, fluid phase and the mixture as a whole 
will be denoted by subscripts s, f and m respectively. We take the force of interaction 
between the particulate and the liquid phases to be proportional to the relative 
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velocity, i.e. equal to the vector F ( a )  (uf-u,,  vf-vs), where F is a function of the 
concentration a and depends also on some other physical parameters of the flow. The 
expression for P(a) can be derived using equations (1.39), (4.9) and (8.2) of Wallis 
(1969) for the steady sedimentation process in a vertical tube by setting F12 (of Wallis) 
equal to -F(a)  (uf-us) .  We finally get 

Here p, and pi are the densities of the particles and the liquid, U is the terminal 
settling velocity of a single particle in the liquid at  rest and g the acceleration due 
to gravity. The constant n depends on a suitably defined Reynolds number (Wallis 
1969, p. 178). 

For non-dimensionalization we use the wavelength L and wave velocity S of the 
surface wave. The non-dimensional variables, denoted by 6, 7, 7 ,  4, 5, #, 8, P, are 
defined by 

In terms of the non-dimensional variables, the equations of motion are 

for the clear liquid in < 8 
CE+eT = 0, 

G7+i2iE+6iiT = -p,-sp SL sine, 

c7+ccE+ccT = -#,,+-case; SL 
52 

for the particulate phase in the mixture 7 > 8 

a7 + (a4& + (aG,), = 0, 

lis7 + 4, 4% + 17, C,, = --pmE 1 +- P i  - (iif - 4,) -- SL sin 8, 

cs7 + 4, cssE + c, ti,, = - -9 1 +- P1 - (4 - c,) + - gL cos e;  

P (Gf-4,)-- SL sine, 

Y “ Y  S2 

Y mq aY 52 

for the liquid phase in the mixture 7 > s” 
-a7+{(l-a)4f}E+{(1-a)&}, = 0, 

rs 1-a 52 
CfT+4 .ii +c& = -j.ims-- 

gL (cf - 8,) + - cos e. cf7+4fcrE+cfcf, = -Fmq-- P 
S2 1 -a 

The boundary conditions on the interface 7 = 8(6,7) are 

the interface is a stream surface for the particulate phase in the mixture, i.e. 

8 7 + ~ s 8 c - ~ s  = o on 7 = & , 7 ) ;  (2.12) 
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the volume flux of liquid across the interface is continuous, i.e. 

the pressure jump p , -p  across the interface is equal to the jump in the relative flux 
of the liquid, i.e. 

(l+8t)(fjm-j3) = -(1-a)(87+.iiP8E-fi~))2+(87+C8E-8)2 on 7 = 8(&7). (2.14) 

Finally, the normal component of the velocity in the clear liquid vanishes at  the wall 
7 = 0, i.e. 

f i (E ,  037) = 0, (2.15) 

and the perturbation of all quantities in the mixture tends to zero as 7+ co. 
Let y = A ( z )  or 7 = J0(E) be the equation to the interface in the basic steady solution 

of Schneider (1982). The problem has three lengthscales : (i) H, the height of the vessel; 
(ii) L, the wavelength of the waves; (iii) A,, a measure of the thickness of the boundary 
layer of clear liquid. The problem has three velocity scales also: (i) U ,  the terminal 
settling velocity of a single particle; (ii) S, the velocity of the waves; (iii) U,, a 
measure of the velocity of the clear liquid in the x-direction in the boundary layer. 
In Schneider’s solution the ratios A o / H  and U / U ,  are both small and of the same 
order as that of &-$Re, where GT is a sedimentation Grashof number and Re a 
sedimentation Reynolds number, defined by 

(2.16a) 

where vi is the kinematic viscosity of the liquid. In the case of the surface-wave 
phenomena we get another non-dimensional parameter E = U / S ,  which we assume 
to be small. Our mathematical model is based on the assumption that E and Gr-f Re 
are both of the same order of smallness, i.e. 

Since we shall use Schneider’s solution in the clear-liquid boundary layer, we 
mention here that his solution is derived on two basic assumptions, namely 

Gr Gr 
Re2+co and -+O.  

Re4 

The y-component of the velocity in the boundary layer in Schneider’s solution is 
of the same order as U. Assuming that there are quite a large number of waves on 
the interface, we find that the basic undisturbed solution of the sedimentation process 
(denoted by a subscript 0 on the variables) can be taken to be a slowly varying 
function of E. To account for this we introduce a slow variable 

El = 4. (2.17) 
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The situation is similar to the study of stability of a non-parallel boundary layer (Saric 
& Nayfeh 1975). The quantities in the unperturbed state are given as 

+ €  + +.... (2.18) 

Here a,, us,, us,, up,, vfo are constants, pmo(El) + ~ p g # ~ ,  9) represents the hydrostatic 
pressure in the mixture and is also equal to the first two terms of#,, and these together 
with do([,), uo(&, 9) and v , ( [~ ,  9) constitute Schneider's approximate solution for the 
basic flow. 

For the perturbation of the basic flow we set 

(2.19) 1 4 = C,+€Uj, v" = €(iJo+v81), f l  = fl0+€Pt, b =  If,+€(Y, 

cs = v"so+€v~, i i p  = Cf,+€u;, v"f = v"f;o+€v;. 

@m = Pmo+epk, a = &,+€a', Cs = ii,,+eu;, 

From (2.18) and (2.19) we find that the surface wave induces a perturbation in the 
velocity components in the mixture comparable to the unperturbed velocity 
components. Substituting (2.19) in (2.3)-(2.15), taking into account the equations 
satisfied by the basic flow and retaining only the dominant terms in 8, we get 

u;+v; = 0 (2.20) in 7 < So,  

u:+u,u;+u,,vl =-p i ,  

v;+u,v; = -p i ;  

(2.21) 

(2.22) 

in 7 2 So, a: + a, + a, v& = 0, (2.23) 

u;, = --pmE+-(U;-U;), 1 ma,) 

p(aJ (v;-v;), 

Y P o  

1 
v;,=--pj +- 

Y mq P o  

(2.24) 

(2.25) 

-a;+ (1 - ao) ui6 + (1 -ao) v;,, = 0, (2.26) 

u;, = -pm5-- 
1 -ao 

(2.27) 

(2.28) 
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on the interface q = do(&), 
d:-v:, = 0 ,  

P k  = P’;  

a, 8: + u, di+ (1 -a,) vi-v’ = 0, 

and finally, on the wall y = 0, 

v’([ ,o ,~)  = 0. 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

3. Derivation of the dispersion relation 
The quantities in the basic flow (denoted by subscripts 0), which appear in the 

coefficients of (2.20)-(2.32), are functions of the slow variable 6, and are actually to 
be treated as constants. Thus in the analysis of the equations for perturbations, in 
the first approximation, we proceed as if we have a parallel flow in the boundary layer. 
The perturbation variables u’, v’, . . . should also be expanded in positive powers of 
8. However, our interest here is only in the dispersion relation; hence we neglect all 
terms containing higher powers of E and write 

u‘ = Ul(E1, y) ei$, a’ = A,&, y) ei$, 6’ = Dl(fl) ei$ etc., (3.1) 

4 = k(EJ 5--w7. (3.2) 

where the phase function $ is of the form 

Substituting (3.1) in (2.20)-(2.22) and eliminating U, and 4, we get the inviscid 
Orr-Sommerfeld equation 

In the boundary layer of the sedimentation process, the function u,(q) is a linear 
function of q (Schneider 1982, A.4 Example) so that (3.3) becomes d2 V,/dq2 - k2 V, = 0. 
The boundary condition for V, is obtained from (2.32) as V,(q = 0) = 0. Solving for 
V, and using the relation between V, and Pl, we get 

{ ( w  - u, k) cosh ky + u,,, sinh ky}, . V , @ O )  

‘(’) = k sinh kd, (3.4) 

which gives the variation with respect to y of the pressure in the clear-liquid boundary 
layer. 

Now we turn to (2.23)-(2.28) in the mixture. Differentiating (2.24) with respect to 
6, (2.25) with respect to q,  adding and then eliminating the combinations uSE+ v,,, and 
ufg+vfll with the help of (2.23) and (2.26) respectively, we get an expression for Apk 
in terms of temporal derivatives of a’. Similarly, starting from (2.27) and (2.28) we 
get another expression for Apk .  Equating these two expressions for Apk,  we get an 
equation for a’ : 

+[y(l-a,)+a,]- - = 0. a7 a I aa’ a7 (3.5) 

The first term of the operator in (3.5) corresponds to an exponential decay of a‘ with 
decay time a,( 1 -a,) { y (  1 -a,) + a,}/i”(a,), which is comparable to the time period 
of the wave. Therefore the solution of (3.5) relevant to the wave motion is given by 
aa‘/& = 0. Using aa’/a7 = 0 in the relations between a‘ andpk mentioned above, we 
find that p; satisfies the Laplace equation. Substituting the expression of the form 
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(3.1) forpk, i.e. p k  = Pm(7) ei$, we find that the solution vanishing at inh i ty ,  7 + 03, 

(3.6) 
is Pml = Pml(6,) e-k(9L80). 

Variations with respect to 7 for all other variables, vanishing at  i nh i ty ,  7+ 03, in 
the mixture 7 3 So, are given by 

[US1(7)7 Kl(7L Ufl(7L Fl(711 = [USl(S,), V,l(S,), U*l(d,), Gl((9rJ)I e -W%l), (3.7) 

where Ufl(80) = KU,l@O), Kl(J0) = i~S1(80), FlVO) = iKUSl(S0) (3.8) 

and 

with 

w yT/ (1 - a,) - iyw - (y  - 1) r 
k ~rnl(S0) = - r/( 1 -ao) - iw USl(~0)~ (3.9) 

(3.10) 

Substituting expressions of the form (3.1) in the boundary conditions (2.29)-(2.31), 

(3.11) V,,(S,) + i d ,  = 0, 

i(a,w--u,k)D, = ( l - a o )  V,lpl(~o)- KVO) (3.12) 

and Pml(So) = G(ao). (3.13) 

Eliminating V,, and Us, between (3.9), (3.11) and K1(8,) = iUsl(80), we get an 
expression for Pml(8,) in terms of D,. Again, eliminating K(8,), V,, and V,, between 
(3.4), (3.11), (3.12) and V,,(8,) = KJ$,(S,), we get ah expression for <(So) :  

we get 

1 
G(S0) = ~ { [ ( l - a o ) K + a , ] ~ - ~ ,  k}{(w-u,k) cothk&o+uo,}Dl. (3.14) 

Substituting the expression for Pm(S,) in terms of D,  and the expression (3.14) in 
(3.13), we get the following dispersion relation: 

{y+(cothkS,) ( y - a o ( y - l ) ) } w 3 + {  -[uok cothkS, 

r + (u, k coth k&o-u,)(y-ao(y- l))] +- (1 -ao+yao + coth k8,) i} w2 
1 -a. 

(2u, k coth kS, - uoT) i (u0 k ~ 0 t h  k 8 , - ~ , , )  U, k-- 
r 

1 -ao 

u, k(uo k coth k&,-u,,) i = 0 on 7 = So. +- 1 -ao 
(3.15) 

The dispersion relation written here looks quite complicated owing to the presence 
of uo(So), which, if non-zero, implies a discontinuity in the tangential velocity of the 
fluid across the interface. However, in Schneider's solution the tangential velocity 
vanishes at the interface, i.e. u,(S,) = 0, so that either w = 0 for all values of k or 

{ ~ + ~ ~ t h k ~ o ( ~ + ~ o - ~ o ~ ) } ~ 2  

r 

r .  
(1  -ao+yao+coth kS,) i w+- uO9i = 0. (3.16) 

The case w = 0 for all k is of no relevance to us, since the waves under consideration 
have non-zero velocity. The other two modes of the dispersion relation given by (3.16) 
are still too complicated to give physically simple results. 

In most of the experiments where these waves might be observed, 01, would be small. 

r 
+ { (Y + a, -Po) UO, +l--a, I l-a, 
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Hence we first take the limiting case a,+O, when (3.16) becomes 

y( 1 + coth k6,) w2 + {yuo7 + r,( 1 + coth k6,) i} w + r, u,,, i = 0 (3.17) 

where, from (3.10), 

Equation (3.17) gives two simple and elegant roots for w :  

ro * - Uon =-- 1. w1 = 
l+coth&,k’ y 

(3.18) 

(3.19) 

The first mode given by the real root w1 represents a dispersive wave without any 
damping, and since -u is positive these waves move upward. It is the same wave 
as given by (1.1) (the y-axis for (1.1) is in the negative 7-direction) for the simple model 
of a one-phase flow. The second mode, given by the purely imaginary root w2 in (3.19), 
represents a non-propagating disturbance, and since -iw, = -rO/y < 0, this mode 
decays in time. 

07. 

4. A few properties of the waves at the interphase 
For the dispersive wave the phase velocity V,, and group velocity V,, are 

w1 - -uo,, tanh k8, = -  1-tanhk8, 
‘v =- -  u 6  

ph - k k(l+tanhk8,)’ gr O7 1 + tanh k8, ’ 

and they satisfy VPh- V,, > 0 for k > 0. In  the long-wave limit k6,+O we get 

lim V,, = -uo,6, = lim Vgr, 
kdo+O k d 0 4  

( 4 4  

i.e. both the phase velocity and group velocity tend to the same finite non-zero limit. 
In  the short-wave limit kS,+ 00 both tend to zero. 

(4-3) 

The presence of the quadratic term in k6, on the right-hand side of (4.3) (in the case 
of surface water waves or gravity waves this quadratic term is absent) shows that 
the dispersion of the long wave here is much stronger than that for the surface water 
waves under gravity. 

In the basic equations for the perturbation or in the dispersion relation (3.15)’ or 
(3.16) or (3.17), the acceleration g due to gravity does not appear directly; it appears 
only in the parameter r through the coefficient F ( a )  (see (2.1)) of the force of 
interaction. Therefore, even though the basic sedimentation process is caused by 
gravity, these waves are not. These waves are produced by the discontinuity in the 
normal derivative of the tangential component of the velocity at  the interface. 

The two complex roots of (3.16) can easily be written down. But these are not very 
useful, and hence to find the effect of a finite value of the particle concentration a, 
we need to evaluate the roots numerically for various values of the parameters y 
(the density ratio of the two phases), r and uo7. For all permissible values of the 
parameters y and uo7 the effect of non-zero a, is to introduce a small damping to the 
dispersive wave and a very small change in the phase velocity. Tables 1 and 2 give the 
values of the phase velocity wlR/k and damping wlI (wl = wlR+iwlI) for -uo7 = 1, 
y = 2, 8, = 1, r = 1 for various values of a. Significant variation in the phase velocity 
and damping of the first mode takes place only for very large or small values of the 
parameters -uo7, y and r. 

For small k6,, 
w = -~,,,{k6, - k26i -$k38i + . . .}. 
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k\.O 
0.01 
0.1 
0.2 
0.5 
1 .o 
2.0 
5.0 

TABLE 1. 

0.001 0.05 0.1 0.5 

0.9901 0.9896 0.989 0.985 
0.906 0.902 0.898 0.867 
0.824 0.818 0.81 1 0.761 
0.632 0.624 0.615 0.547 
0.432 0.425 0.417 0.357 
0.245 0.241 0.236 0.198 
0.100 0.098 0.096 0.080 

Phase velocity; -uot = 1, y = 2, 8 = 1, r= 1 

k \ a 0  

0.01 
0.1 
0.2 
0.5 
1 .o 
2.0 
5.0 

0.001 

-1 x 10-8 

-4 x 10-6 
-2 x 10-6 
-5 x 10-5 
-6  x 
-6 x 

-7 x 10-7 

0.05 

-4 x 10-9 
-3 x 10-5 
-2 x 10-4 
-1 x 10-3 
-2 x 10-3 
-3 x 10-3 
-3 x 10-3 

0.1 

-8 x lo-' 
-6 x 

-2 x 10-3 
-4 x 10-3 
-5 x 10-3 

-3 x 10-4 

-5 x 10-3 

0.5 

-1 x 10-7 

-4 x 10-4 
-2 x 10-3 
-5 x 10-3 
-7 x 10-3 

-8 x lop6 

- 7 x 10-3 

TABLE 2. Damping wII 

It is found that for the second mode, given by w2, the effect of finite a, is to  introduce 
a small positive phase velocity and a small change in damping (and never an 
amplification). 

I n  the physically realistic situation of small a,, we can expand the roots of (3.16) 
in powers of ao. The first two terms of the expansion of wlR and wlI (where 
w1 = wlR+iwlI)  are 

+ o(ug). a,(y - 1 l2 u& To 
WII = - 

{y2u$ + I'$( 1 + coth k80)2} { 1 + coth k8,) (4.5) 

From (4.5) we note that for long waves, i.e. I k8, I -4 1, the damping is negligible, 
being proportional to ak3S:. 

This work was completed when the author was on a European Fellowship of the 
Alexander von Humboldt Foundation at the Technical University of Vienna. He 
sincerely thanks Professor W. Schneider and his colleagues for valuable discussions. 

REFERENCES 

DAVIS, R. H. ,  HERBOLZHEIMER, E. & ACRIVOS, A. 1983 Wave formation and growth during 

HERROLZHEIMER, E. 1983 Stability of the flow during sedimentation in inclined channels. Phys. 

KYNCH, G. J. 1952 A theory of sedimentation. Trans. Faraday Soe. 48, 166176. 
SARIC, W. S. C NAYFEH, A. H. 1975 Phys. Fluids 18, 945-950. 

sedimentation in narrow tilted channels. Phys. Fluids 26, 2055-2064. 

Fluids 26, 2043-2054. 



426 P.  Prasad 

SCHAFLINQER, U. 1983 Experimentelle und theoretische Untersuchungen zur Sedimentation in 

SCHNEIDER, W. 1982 Kinematic-wave theory of sedimentation beneath inclined walls. J .  Fluid 

WALLIS. G .  B. 1969 One-dimensional Two-Phase Flows. McGraw-Hill. 

Behaltern mit geneigten Wanden. Ph.D. thesis, T. U. Wien. 

Mech. 120, 323-346. 




